The Dirac Operator on Lorentzian Spin Manifolds and the Huygens Property
نویسنده
چکیده
We consider the Dirac operator D of a Lorentzian spin manifold of even dimension n 4. We prove, that the square D 2 of the Dirac operator on plane wave manifolds and the shifted operator D 2 ? K on Lorentzian space forms of constant sectional curvature K are of Huygens type. Furthermore, we study the Huygens property for coupled Dirac operators on 4-dimensional Lorentzian spin manifolds.
منابع مشابه
Twistor Spinors on Lorentzian Manifolds, Cr-geometry and Feeerman Spaces
The paper deals with twistor spinors on Lorentzian manifolds. In particular , we explain a relation between a certain class of Lorentzian twistor spinors and the Feeerman spaces of strictly pseudoconvex spin manifolds which appear in CR-geometry. Let (M n;k ; g) be a n-dimensional smooth semi-Riemannian spin manifold of index k with the spinor bundle S. There are two conformally covariant diffe...
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملGeneralized Cylinders in Semi-riemannian and Spin Geometry
We use a construction which we call generalized cylinders to give a new proof of the fundamental theorem of hypersurface theory. It has the advantage of being very simple and the result directly extends to semi-Riemannian manifolds and to embeddings into spaces of constant curvature. We also give a new way to identify spinors for different metrics and to derive the variation formula for the Dir...
متن کاملOn $(epsilon)$ - Lorentzian para-Sasakian Manifolds
The object of this paper is to study $(epsilon)$-Lorentzian para-Sasakian manifolds. Some typical identities for the curvature tensor and the Ricci tensor of $(epsilon)$-Lorentzian para-Sasakian manifold are investigated. Further, we study globally $phi$-Ricci symmetric and weakly $phi$-Ricci symmetric $(epsilon)$-Lorentzian para-Sasakian manifolds and obtain interesting results.
متن کاملAn Index Theorem for Lorentzian Manifolds with Compact Spacelike Cauchy Boundary
We show that the Dirac operator on a compact globally hyperbolic Lorentzian spacetime with spacelike Cauchy boundary is a Fredholm operator if appropriate boundary conditions are imposed. We prove that the index of this operator is given by the same expression as in the index formula of Atiyah-Patodi-Singer for Riemannian manifolds with boundary. The index is also shown to equal that of a certa...
متن کامل